8.1.14

Propositional calculus - Wikipedia

Propositional calculus - Wikipedia, the free encyclopedia

In mathematical logic, a propositional calculus or logic (also called sentential calculus or sentential logic) is a formal system in which formulas of a formal language may be interpreted to represent propositions. A system of inference rules and axioms allows certain formulas to be derived. These derived formulas are called theorems and may be interpreted to be true propositions. Such a constructed sequence of formulas is known as a derivation or proof and the last formula of the sequence is the theorem. The derivation may be interpreted as proof of the proposition represented by the theorem.
Usually in Truth-functional propositional logic, formulas are interpreted as having either a truth value of true or a truth value of false.[clarification needed] Truth-functional propositional logic and systems isomorphic to it, are considered to be zeroth-order logic.